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Evaluation of effective ion-ion potentials in aqueous electrolytes
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We present high-accuracy simulation data for ion-ion radial distribution functions in NaCl aqueous electro-
lyte. From the data we evaluate ion-ion effective potentials via inverse Monte Carlo simulation procedure.
Alternatively, we first evaluate effective direct correlation functions and then obtain effective potentials using
the hypernetted-chain~HNC! approximation. Both methods are in excellent agreement, indicating that HNC
approximation performs well with effective ion-ion potentials in aqueous solutions.
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I. EFFECTIVE POTENTIALS

Even the most common electrolyte solutions defy sim
and accurate description, mainly because the aqueous so
has a very complicated structure. This leads to the wi
spread use of the primitive model, where aqueous structu
included only through the high dielectric constant of the co
tinuous background medium. However, that model is inac
rate when solute separations are comparable to the mole
diameter of water and when solvent structure and geom
are important. In practice, all situations involving approa
and binding of macromolecules or colloidal particles belo
to this class.

The classical McMillan-Mayer theory@1,2# of solutions
provides a natural way to proceed beyond the limitations
the primitive model. A solution is described with a referen
system~usually the aqueous solvent! and a system of solute
particles interacting vian-particle potentials of mean force
In applications of the McMillan-Mayer theory one normal
approximatesn-particle potentials of mean force with a su
of pairwise terms ~Kirkwood approximation for the
n-particle correlation function! expressing the problem in
terms of the ion-ion potentials of mean force

Vi j
pm f~r !52kBT ln@gi j ~r !#, ~1!

wheregi j (r ) are the radial distribution functions. If the re
erence solution in the McMillan-Mayer theory is a unifor
electrolyte, pairwise approximation~1! for the potentials of
mean forceVi j

pm f(r ) is screened by other ions and for larg
separations the potentials do not reduce to the Coulo
form. Perhaps for this reason, the McMillan-Mayer theory
its original form has seldom been applied to electrolyte
lutions. A notable exception is the work by Friedman@3# who
consistently promoted the use of empirical ion-ion potent
in aqueous solutions.

The McMillan-Mayer theory is easily generalized to no
uniform problems, for example, electrolyte solutions ne
charged surfaces@4#. We @5,6# and others@7,8# have recently
applied this method to electrical double layer problems w
encouraging results. In the course of that work we notice
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need for more accurate effective ion-ion potentials, which
the motivation for the present study.

The theory of solutions was further developed by Ad
man @9,10#, who derived exact expressions for effective d
rect correlation functionsci j

e f f(r ) that formally satisfy normal
Ornstein-Zernike equations

hi j ~r !5ci j
e f f~r !1(

m
rmE dr 8cim

e f f~r2r 8!hm j~r 8!. ~2!

hi j (r )5gi j (r )21, andrm are the solute densities. Adelma
also defined effective pair potentials, that can be expresse
@11#

bVi j
e f f~r !52 ln@gi j ~r !#1hi j ~r !2ci j

e f f~r !1bi j
e f f~r !. ~3!

The effective bridge functionsbi j
e f f(r ) are functionals of

hi j (r ) and r i and b51/kBT. Just like the effective direc
correlation functions, the effective potentials describe the
erage interaction of two ions in the presence of the solve
They have the correct asymptotic behavior becauseci j

e f f(r )
;2bqiqj /«rr where the effective dielectric constant«r de-
pends on the concentrations. However, because of the d
culty in evaluatingci j

e f f(r ) from the first principles Adel-
man’s formalism was also seldom used.

While the exact solution theory cannot be construc
with only the pairwise ion-ion terms, Eq.~3! represents the
best pairwise potential approximation based on the kno
edge of two-particle correlation functions@12#. In practice,
this pairwise potential can be determined from the availa
correlation functions via an inverse Monte Carlo~MC! simu-
lation as described in several recent works by Lyubartsev
Laaksonen@13–15#. They first performed a full molecula
simulation of an aqueous ionic solution obtaining the ion-i
correlation functions. The correlation functions were th
used in a separate inverse Monte Carlo simulation of a s
tem consisting of only ions interacting via effective pote
tials. The effective potentials were continuously adjusted
til the procedure reproduced the correlation functio
obtained from the initial simulation with the molecular so
vent.
©2002 The American Physical Society02-1
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TABLE I. Simulation parameters.

Run no. Concentration~M! No. of H2O No. of ion pairs Average box size (Å) Density (g/cm3)

1 0.5 1964 18 38.97 1.022
2 1 1950 36 39.02 1.041
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As we are dealing with rather dilute solutionsbi j
e f f(r ) is

expected to be small and short-ranged. We therefore pro
to use Eq.~3! with bi j

e f f(r )50 @amounting to aneffective
hypernetted-chain~HNC! approximation#, evaluateci j

e f f(r )
from hi j (r ) from Eq. ~2! and find the effective potential
Vi j

e f f(r ) without the need for the inverse Monte Carlo sim
lation.

II. COMPUTATIONAL DETAILS

The molecular simulations that provide input ion-ion d
tribution functions are most often performed for a cubic p
riodic system using Ewald potentials. We performed mole
lar dynamics simulations of aqueous NaCl solution at t
concentrations: 0.5 M and 1 M. The essential simulation
rameters are given in Table I. The molecular models and
simulation procedure were the same as in previous wo
@13,14#, however, the present simulations were performed
a larger box over a substantially longer time. Briefly, t
flexible simple point change water model@16# and Smith-
Dang parameters@17# for ions (sNa52.35 Å, «Na
50.544kJ/M , sCl54.4 Å, «Cl50.419 kJ/M) were em-
ployed. The constant temperature–constant pressure mo
lar dynamics algorithm@18# was used to keep temperatu
T5298 K and pressure 1 atm. The system was equilibra
during 0.5 ns~of which first 100 ps at fixed volume! and then
averages were collected during 10 ns. The Ewald summa
method was used to include long-range electrostatic inte
tions. The simulation software used wasMDYNAMIX package
@19#.

The second simulation method used in this work was
verse MC calculation applied to obtain effective potenti
from the radial distribution functions. Details were report
in earlier work@13,15#. The inverse procedure used the sa
system size and parameters, with electrostatic interac
again described by the Ewald potential. Practically, the i
ion potential was decomposed into Coulombic and sh
range parts. The Coulombic part was treated in the sim
tions by the Ewald method, while the short-range part w
varied in the course of the inverse MC procedure. The
electric constant of the Coulombic part was determined fr
the condition that the short-range potential goes to zero
large separations as fast as possible. We defined in this
the effective dielectric constant as«579 for 0.5 M concen-
tration and«578 for 1 M, though variation of« within five
units does not noticeable change the results.

III. RESULTS AND DISCUSSION

A. Radial distribution functions

Ion-ion distribution functions obtained after spherical a
eraging are shown in Fig. 1. They generally agree well w
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the results obtained earlier@13,14# with smaller system sizes,
shorter run times, and slightly different concentrations. Som
differences can still be observed. Particularly, there is a s
nificant difference in the first peak of the Na-Na and Cl-C
radial distribution functions, as well as the clear oscillato
behavior in the 8 –12 Å separation region, which was n

FIG. 1. Radial distribution functions for ion pairs in aqueou
NaCl electrolyte. Continuous line, 0.5 M; dashed line, 1 M.
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apparent in the previous simulations. It was noticed ear
@14# that convergence of the ion-ion distribution functions
molecular dynamics~MD! simulations is very slow, due to
relatively low statistics of ion pairs and their slow diffusio

To illustrate the convergence, in Fig. 2 we show t
Na-Na distribution function for the 0.5 M NaCl solution av
eraged over five consecutive 2 ns segments of the MD
jectory. The earlier data for 0.55 M concentration and
box length 38.7 Å, obtained from a 2 nssimulation@14# are
also shown for comparison. One can see that at the first p
of the radial distribution function the fluctuations around t
average reach the value of 0.4, decreasing to about 0.1
distances 6 –10 Å and less than 0.05 at distances larger
12 Å. The statistical error of the average radial distributi
function may be evaluated by dividing these fluctuations
A5. Thus the present data, generated during substant
longer simulation time, show clear improvement in accura
and resolution. Na-Cl and Cl-Cl distribution functions ha
similar but somewhat lower fluctuations, while in the case
1 M concentration the fluctuations are about half as large
those in the 0.5 M case.

Below, we will treat the distribution functions calculate
in the MD simulations as ‘‘exact’’ and reconstruct the effe
tive ion-ion potentials by the inverse Monte Carlo simulati
or by the hypernetted-chain equation.

B. Change to grand canonical ensemble

As the simulations are performed in the canonical
semble with relatively small number of ionsN, at large sepa-
rations the radial distribution functions do not approa
unity, with the difference being of the order of 1/N. The

FIG. 2. Na-Na radial distribution functions in 0.5 M NaCl ele
trolyte obtained over five consecutive 2 ns segments of the mol
lar dynamics trajectory~the initial 0.5 ns of the simulation wa
disregarded!. The old data from Ref.@14# for the 0.55 M electrolyte,
38.7 Å box size, and 2 ns simulation time are also presented.
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direct correlation functions are formally undefined@20# be-
cause of the constraint on the number of particles. Before
continue with the calculation we need to convert~approxi-
mately! the radial distribution functions to their counterpar
in the grand canonical ensemble.

The behavior of all three pairsgi j (r ) at large separations
is shown in Fig. 3. Note that at both concentrations the t
like-ion pairs and the dislike pair all appear to approach
same limiting value. The same behavior has recently b
found by Ulander and Kjellander@21# in a Monte Carlo cal-
culation of ion-ion radial distribution functions within th
primitive model.

Calculation of the asymptotic behavior of the radial d
tribution functions of an ionic solution in the canonical e
semble is complicated, as is the calculation of compress
ity described in Ref.@22#. But the large-separation behavio
of gi j (r ) suggests that anion and cation density fluctuatio
are so strongly coupled that they effectively vary togethe

In the first order, and for a single-component system, o
estimates the radial distribution functiong~r! of the infinite
system from itsN-particle finite system counterpart as@23#

g~r !5gN~r !1
kT

NkT
0

, ~4!

where kT is the isothermal compressibility andkT
0

5(rkBT)21 is its ideal gas value.

u-

FIG. 3. Behavior of the radial distribution functions shown
Fig. 1 at larger ion-ion separations. Continuous line, Na-Na; das
line, Na-Cl; separate symbols, Cl-Cl.
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With respect to density fluctuations in binary electrolyt
we will now consider the strong coupling limit where dens
fluctuations of two components only occur together. For e
component of the electrolyte, the compressibility is given
kT5(2frkBT)21 wheref is the osmotic coefficient. The
factor of 2 enters because one can only compress both c
ponents together.

Using the experimental values@24# of f50.92 for 0.5 M
NaCl andf50.94 for 1M NaCl electrolyte, from Eq.~4! we
estimate the difference betweeng(r ) andgN(r ) in our simu-
lations as 0.030 and 0.017, respectively. Referring back
Fig. 3 we see that these values are in good agreement
the simulations. Similarly good agreement is obtained w
the higher precision simulation of a 2:2 electrolyte in t
primitive model @21#. That simulation was performed wit
the ion radius of 2.3 Å and 20 ion pairs. The osmotic co
ficient for 40 mM 2:2 primitive model electrolyte with ion
radius 2.1 Å in the HNC approximation can be interpolat
from the table IV in Ref.@25# as f50.66. The constan
required to change the radial distribution functions to
grand canonical ensemble is then estimated as 0.038
determined from the simulation as 0.039.

C. Radially symmetrical calculation of effective potentials

The potentialsVi j
e f f(r ) in Eq. ~3! are the sums of the elec

trostatic part and the short-range part arising from the st
ture of the solvent. In simulations that use the Ewald meth
the electrostatic part is the Ewald potential and we have

Vi j
e f f~r !5Vi j

Ewald~r !1Vi j
short~r !. ~5!

In principle, the periodicity of the simulation system w
be reflected in all the results. In order to obtain spherica
symmetrical effective potentials at some stage in the pro
dure it will be necessary to perform angular averaging. N
mally this is done when radial distribution functions are e
timated from system configurations observed during
simulation. Presently we will follow this procedure.

The effective direct correlation functions were obtain
from spherically averaged distribution functions, corrected
correspond to the grand canonical ensemble as desc
above. Beyond the system size limit (19 Å) the distributi
functions were assigned the value of one. Ornstein-Zern
equations were solved via Fourier transforms and the res
ing direct correlation functions are similar to the functio
gi j (r )but have clearly acquired a long-range Coulomb
~Fig. 4!. To obtain accurate values for the functionsc(r )
inside the ion core requires greater precision in calculat
As they are not needed for this study, we have not attemp
such calculations.

The Ewald potential between a pair of ions@26,27# was
also spherically averaged and subtracted from the effec
potential to obtainVi j

short(r ). The baseline value ofc(r ) and
Vi j

short(r ) is affected by the small errors atk50 of the Fou-
rier transforms ofg(r ) and in case ofVi j

short(r ) also by the
choice of the additive constant in the Ewald potential. B
we know that the solvent contribution to the effective pote
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tial is short ranged, and can therefore choose the add
constant to ensure thatVi j

short(r ) go to zero at large separa
tions.

The results are shown in Fig. 5. They agree with the
sults obtained from the same input data using the inve
Monte Carlo simulation so well that the differences wou
hardly be observable in the figure~see Fig. 6!. Both data sets
in tabular form as well as the input values ofgi j (r ) are
available from the author’s internet site@28#.

D. Anisotropic calculation of the effective potentials

As the simulation system consists of a periodic cubic l
tice, the ion-ion distribution functionsgi j (r ) are anisotropic.
The effective ion-ion potentialsVi j (r ) calculated via Eq.~3!
are then also anisotropic, reflecting the symmetry of
simulation system. However, for a bulk ionic fluid simulatio
it can be expected that the short-range part of the poten
Vi j

short(r ) is less affected by the anisotropy because it d
not extend beyond the edges of the simulation cell.

The evaluation of effective potentials from the anisotrop
ion-ion distribution functionsgi j (r ) is also interesting be-
cause of its possible use in physically anisotropic situati
such as the interaction of two ions in the presence of a w
or a macromolecule. In order to test the procedure and p
sibly also improve the accuracy of calculated effective p
tentials we have attempted to calculate the effective po
tials using the anisotropic ion-ion distribution function
gi j (r ) evaluated over the whole periodic simulation cell.

The effective direct correlation functions were obtain
via discrete Fourier transforms of large data sets contain
the functionshi j (r ) defined on the cube with 198 points i
each direction. The effective potentialsVi j (r ) were then ob-
tained from Eq.~3! with the functionsbi j

e f f(r ) set to zero.

FIG. 4. Effective direct correlation functions for 0.5 M NaC
electrolyte. The accuracy is insufficient to determine a small c
stant term that needs to be added to each function. Continuous
Na-Na; dashed line, Na-Cl; separate symbols, Cl-Cl.
2-4
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After subtracting the Ewald potential from the anisotrop
Vi j (r ) the short-range part was expected to be almost iso
pic. However, the procedure appears difficult for several r
sons. The full distribution functions are not as accurate as
spherical averages, and even longer simulation times wo
be required for satisfactory accuracy.

Another aspect of the simulation of ionic systems th
requires more detailed study became apparent upon inv
gation of anisotropic data sets. The periodic system w
long-range interaction facilitates correlations between m
than two ions, and thus leads to unexpected slight pre
ences of each ion to be in a particular positions within
simulation cell.

FIG. 5. Short-range part of the effective potential between i
ion pairs in aqueous NaCl electrolyte. Continuous line, 0.5 M; se
rate symbols, 1 M. In subtracting Ewald potential we assumed
electric constant of 79 and 78 for 0.5 M and 1 M solution,
respectively.
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The short-range effective potential obtained in the ani
tropic calculation was spherically averaged at the end of
calculation. It is shown in Fig. 6 together with the resu
obtained from spherically averaged input data. The res
indicate that the anisotropic calculation is feasible althou
at the present stage it appears less accurate. It gives va
very close to the other two methods but drifts away fro
zero at larger. Judging by the drift, the short-range potent
calculated with this method is not as good as that obtai
after spherical averaging. Possible source of error may
inadequate approximation in changing to grand canonical

-
-

i-
FIG. 6. Short-range part of the ion-ion effective potentials in 0

M NaCl electrolyte evaluted with different methods. Open symbo
inverse MC simulation, continuous line, spherical HNC; clos
symbols, HNC with anisotropic correlation functions of the simu
tion cell.
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samble using spherically symmetrical Eq.~4! or a need for
corrections between periodic and nonperiodic quantities@29#.

IV. CONCLUSION

Liquid state closure approximations are normally tes
by evaluating radial distribution functions from the mod
potentials and comparing the results with simulations. In
present case we proceeded in the opposite direction, ev
ating the effective potentials from ion-ion distribution fun
tions and comparing the results with inverse MC simulatio
The excellent agreement proves that HNC is a very g
approximation to use with the effective potentials betwe
ions in aqueous solutions. Just like a primitive model el
trolyte, the effective ionic fluid is normally not a dense flu
and this conclusion was therefore naturally expected.

The agreement described of course does not quantify
accurate is the two-particle effective potential description
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ion interaction in the aqueous solvent. This has been te
earlier @14# using simulation methods, where activity an
osmotic coefficients of a solution were evaluated from
effective potentials. Similar testing can now be more eas
performed using variants of the HNC approximation. But t
most interesting problems to be explored in the future re
to the behavior of ions in aqueous solutions near the s
faces. The confirmation of the accuracy of HNC approxim
tion in work with the effective potentials is important fo
such future applications.
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