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Evaluation of effective ion-ion potentials in aqueous electrolytes
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We present high-accuracy simulation data for ion-ion radial distribution functions in NaCl aqueous electro-
lyte. From the data we evaluate ion-ion effective potentials via inverse Monte Carlo simulation procedure.
Alternatively, we first evaluate effective direct correlation functions and then obtain effective potentials using
the hypernetted-chaitHNC) approximation. Both methods are in excellent agreement, indicating that HNC
approximation performs well with effective ion-ion potentials in aqueous solutions.
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|. EFFECTIVE POTENTIALS need for more accurate effective ion-ion potentials, which is
the motivation for the present study.

Even the most common electrolyte solutions defy simple The theory of solutions was further developed by Adel-
and accurate description, mainly because the aqueous solvenan[9,10], who derived exact expressions for effective di-
has a very complicated structure. This leads to the widerect correlation functionsﬁ”(r) that formally satisfy normal
spread use of the primitive model, where aqueous structure Srnstein-Zernike equations
included only through the high dielectric constant of the con-
tinuous background medium. However, that model is inaccu- off T , ,
rate when solute separations are comparable to the molecular hyj (r)=cjj (r)+% ij dr’Cin (Y =r")hm;(r'). - (2)
diameter of water and when solvent structure and geometry
are important. In practice, all situations involving approachh;;(r)=g;;(r)—1, andp, are the solute densities. Adelman
and binding of macromolecules or colloidal particles belongalso defined effective pair potentials, that can be expressed as
to this class. [11]

The classical McMillan-Mayer theor}1,2] of solutions
provides a natural way to proceed beyond the limitations of  BV{'(r)=—In[g;;(r)]+h;;(r) —c{ (1) +bE(r). (3)
the primitive model. A solution is described with a reference
system(usually the aqueous solvergnd a system of solute The effective bridge functionsbﬁ-”(r) are functionals of
particles interacting via-particle potentials of mean force. h;;(r) and p; and B=1/kgT. Just like the effective direct
In applications of the McMillan-Mayer theory one normally correlation functions, the effective potentials describe the av-
approximatesi-particle potentials of mean force with a sum erage interaction of two ions in the presence of the solvent.
of pairwise terms (Kirkwood approximation for the They have the correct asymptotic behavior becafs§r)
n-particle correlation functionexpressing the problem in ~—q;q;/e,r where the effective dielectric consta) de-
terms of the ion-ion potentials of mean force pends on the concentrations. However, because of the diffi-

culty in evaluatingc'/(r) from the first principles Adel-
VE™(r) = —kgT In[g;; (1)1, (1) man’s formalism was also seldom used.

While the exact solution theory cannot be constructed
whereg;;(r) are the radial distribution functions. If the ref- with only the pairwise ion-ion terms, E43) represents the
erence solution in the McMillan-Mayer theory is a uniform best pairwise potential approximation based on the knowl-
electrolyte, pairwise approximatiofl) for the potentials of edge of two-particle correlation functiofi$2]. In practice,
mean forcevﬂmf(r) is screened by other ions and for large this pairwise potential can be determined from the available
separations the potentials do not reduce to the Coulomborrelation functions via an inverse Monte CafivC) simu-
form. Perhaps for this reason, the McMillan-Mayer theory inlation as described in several recent works by Lyubartsev and
its original form has seldom been applied to electrolyte solaaksonen13—-15. They first performed a full molecular
lutions. A notable exception is the work by Friednf@hwho  simulation of an agueous ionic solution obtaining the ion-ion
consistently promoted the use of empirical ion-ion potentialorrelation functions. The correlation functions were then
in agueous solutions. used in a separate inverse Monte Carlo simulation of a sys-

The McMillan-Mayer theory is easily generalized to non-tem consisting of only ions interacting via effective poten-
uniform problems, for example, electrolyte solutions neattials. The effective potentials were continuously adjusted un-
charged surfacdgl]. We[5,6] and otherg7,8] have recently til the procedure reproduced the correlation functions
applied this method to electrical double layer problems withobtained from the initial simulation with the molecular sol-
encouraging results. In the course of that work we noticed aent.
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TABLE |. Simulation parameters.

Run no. ConcentratiotM) No. of H,O No. of ion pairs Average box size (A) Density (g/&m

1 0.5 1964 18
2 1 1950 36

38.97 1.022
39.02 1.041

As we are dealing with rather dilute squtiobﬁ”(r) is  the results obtained earligt3,14] with smaller system sizes,
expected to be small and short-ranged. We therefore proposéiorter run times, and slightly different concentrations. Some
to use Eq.(3) with bS"(r)=0 [amounting to areffective differences can still be observed. Particularly, there is a sig-
hypernetted-chaifHNC) approximatiof, evaluatect'’(r) nificant difference in the first peak of the Na-Na and CI-Cl

ij

from h;;(r) from Eq. (2) and find the effective potentials radial distribution functions, as well as the clear oscillatory
Vﬁ”(r) without the need for the inverse Monte Carlo simu- behavior in the 8—12 A separation region, which was not

lation.

II. COMPUTATIONAL DETAILS

The molecular simulations that provide input ion-ion dis-
tribution functions are most often performed for a cubic pe-
riodic system using Ewald potentials. We performed molecu
lar dynamics simulations of aqueous NaCl solution at twa
concentrations: 0.5 M and 1 M. The essential simulation pa
rameters are given in Table I. The molecular models and th
simulation procedure were the same as in previous work
[13,14], however, the present simulations were performed ir
a larger box over a substantially longer time. Briefly, the
flexible simple point change water moddl6] and Smith-
Dang parameters[17] for ions (on,=2.35 A, &na
=0.544&J/M, oc=4.4 A, £5=0.419 kJ/M) were em-
ployed. The constant temperature—constant pressure molec
lar dynamics algorithn18] was used to keep temperature
T=298 K and pressure 1 atm. The system was equilibrate
during 0.5 ngof which first 100 ps at fixed volumend then
averages were collected during 10 ns. The Ewald summatic

method was used to include long-range electrostatic interac_
tions. The simulation software used wasYNAMIX package

[19].

The second simulation method used in this work was in-
verse MC calculation applied to obtain effective potentials
from the radial distribution functions. Details were reported
in earlier work[13,15. The inverse procedure used the same
system size and parameters, with electrostatic interactio
again described by the Ewald potential. Practically, the ion
ion potential was decomposed into Coulombic and short
range parts. The Coulombic part was treated in the simula
tions by the Ewald method, while the short-range part was
varied in the course of the inverse MC procedure. The di-
electric constant of the Coulombic part was determined fromn
the condition that the short-range potential goes to zero &
large separations as fast as possible. We defined in this we
the effective dielectric constant as=79 for 0.5 M concen-
tration ande =78 for 1 M, though variation o within five
units does not noticeable change the results.

IIl. RESULTS AND DISCUSSION
A. Radial distribution functions

lon-ion distribution functions obtained after spherical av-

r[A)

FIG. 1. Radial distribution functions for ion pairs in agqueous

eraging are shown in Fig. 1. They generally agree well withNaCl electrolyte. Continuous line, 0.5 M; dashed line, 1 M.
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FIG. 2. Na-Na radial distribution functions in 0.5 M NaCl elec-
trolyte obtained over five consecutive 2 ns segments of the molecu:
lar dynamics trajectonythe initial 0.5 ns of the simulation was
disregardey The old data from Ref14] for the 0.55 M electrolyte,

38.7 A box size, and 2 ns simulation time are also presented.

r[A]

apparent in the previous simulations. It was noticed earlier
[14] that convergence of the ion-ion distribution functions in - kG, 3. Behavior of the radial distribution functions shown in
molecular dynam_lcséiMD) simulations is very slow, due to Fig, 1 at larger ion-ion separations. Continuous line, Na-Na; dashed
relatively low statistics of ion pairs and their slow diffusion. |ine, Na-Cl; separate symbols, CI-CI.

To illustrate the convergence, in Fig. 2 we show the _ ) _
Na-Na distribution function for the 0.5 M NaCl solution av- direct correlation functions are formally undefinfD]| be-
eraged over five consecutive 2 ns segments of the MD trgt@use of the constraint on the number of particles. Before we
jectory. The earlier data for 0.55 M concentration and thecontinue with the calculation we need to conveapproxi-
box length 38.7 A, obtained fro a 2 nssimulation[14] are mately the radial distribution functions to their counterparts
also shown for comparison. One can see that at the first peéﬂ ?ﬁegézﬂgvﬁgpg?Igﬁltﬁpeséem;le'. (r) at large separations
of the radial distribution function the fluctuations around the, - -l ge sep
average reach the value of 0.4, decreasing to about 0.1 fl$ shown in Fig. 3. Note that at both concentrations the two

. _ . Ike-ion pairs and the dislike pair all appear to approach the
distances 6-10 A and less than 0.05 at distances larger th%glme limiting value. The same behavior has recently been

flznc’?(‘);r:saStag'eszcjl e;gg%f t?ﬁ %\(ﬁra?hee;idf'lalcg'Z[{fr?;'%nfound by Ulander and Kjellandg¢®1] in a Monte Carlo cal-
uncti Y val y dviding fuctuat DYulation of ion-ion radial distribution functions within the
J5. Thus the present data, generated during SUbSta”t'alﬁrimitive model

Ioné;er S|r|nu_lat|ogt|r2<|a, sfzjovcvlclceladrllm%royemfnt in accarac Calculation of the asymptotic behavior of the radial dis-
and resolution. Na-Cl an ) Istribution functions have ribution functions of an ionic solution in the canonical en-

similar but somewhat lower fluctuations, while in the case ofgg |6 ig complicated, as is the calculation of compressibil-
1 M concentration the fluctuations are about half as large 3Ry described in Ref[22]. But the large-separation behavior
those in the 0.5 M case. of g;;j(r) suggests that anion and cation density fluctuations

. t?\el?\\/lN[’) we WI'” t.treat the“ dIStI'ItE)utI%n funct|?ns ICSLCUI"#ed are so strongly coupled that they effectively vary together.
In the simulations as "exact”and reconstruct the etlec- -, yne first order, and for a single-component system, one

tlveblo[;lor; potentlt?lsdbyhthe mverf_e Monte Carlo S'mUIat'onestimates the radial distribution functiafr) of the infinite
or by the hypernetied-chain equation. system from itsN-particle finite system counterpart g23]

B. Change to grand canonical ensemble

4

KT
As the simulations are performed in the canonical en- g(r)—gN(r)+W,
semble with relatively small number of iohg at large sepa- T
rations the radial distribution functions do not approachwhere «; is the isothermal compressibility and<$
unity, with the difference being of the order ofNL/ The = (pkgT) ! is its ideal gas value.
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With respect to density fluctuations in binary electrolytes

we will now consider the strong coupling limit where density 4 I T
fluctuations of two components only occur together. For eact L | .
component of the electrolyte, the compressibility is given as 3 L H _

kr=(2¢pksT) 1 where ¢ is the osmotic coefficient. The .
factor of 2 enters because one can only compress both con ‘
ponents together. 2 ” i

Using the experimental valu¢g4] of ¢=0.92 for 0.5 M r { ﬂ 7
NaCl and¢=0.94 for 1M NacCl electrolyte, from Eq4) we
estimate the difference betweg(r) andgy(r) in our simu- : L
lations as 0.030 and 0.017, respectively. Referring back tc
Fig. 3 we see that these values are in good agreement wit
the simulations. Similarly good agreement is obtained with
the higher precision simulation of a 2:2 electrolyte in the 1=
primitive model[21]. That simulation was performed with r
the ion radius of 2.3 A and 20 ion pairs. The osmotic coef- 2 l l i '
ficient for 40 mM 2:2 primitive model electrolyte with ion 0 4 8 12 16 20
radius 2.1 A in the HNC approximation can be interpolated rA]
from the table IV in Ref.[25] as ¢=0.66. The constant
required to change the radial distribution functions to the g, 4. Effective direct correlation functions for 0.5 M NaCl
grand canonical ensemble is then estimated as 0.038 amrfkctrolyte. The accuracy is insufficient to determine a small con-
determined from the simulation as 0.039. stant term that needs to be added to each function. Continuous line,

Na-Na; dashed line, Na-Cl; separate symbols, CI-Cl.

c(r)
|

C. Radially symmetrical calculation of effective potentials o N
tial is short ranged, and can therefore choose the additive

constant to ensure thM-th"”(r) go to zero at large separa-
ions

The potentials/{(r) in Eq. (3) are the sums of the elec-
trostatic part and the short-range part arising from the stru .
ture of the solvent. In simulations that use the Ewald method 114 results are shown in Fig. 5. They agree with the re-

the electrostatic part is the Ewald potential and we have gt obtained from the same input data using the inverse

eff Ewald short Monte Carlo simulation so well that the differences would
Vi (N=Vi 20 + Vi ©) hardly be observable in the figu(see Fig. 6. Both data sets
in tabular form as well as the input values gfi(r) are

In principle, the periodicity of the simulation system will @vailable from the author’s internet si23].
be reflected in all the results. In order to obtain spherically
symmetrical effective potentials at some stage in the proce-
dure it will be necessary to perform angular averaging. Nor-
mally this is done when radial distribution functions are es- As the simulation system consists of a periodic cubic lat-
timated from system configurations observed during theice, the ion-ion distribution functiong;;(r) are anisotropic.
simulation. Presently we will follow this procedure. The effective ion-ion potentialg;j;(r) calculated via Eq(3)

The effective direct correlation functions were obtainedare then also anisotropic, reflecting the symmetry of the
from spherically averaged distribution functions, corrected tasimulation system. However, for a bulk ionic fluid simulation
correspond to the grand canonical ensemble as describédcan be expected that the short-range part of the potential
above. Beyond the system size limit (19 A) the distributionvfjh"”(r) is less affected by the anisotropy because it does
functions were assigned the value of one. Ornstein-Zernik@ot extend beyond the edges of the simulation cell.
equations were solved via Fourier transforms and the result- The evaluation of effective potentials from the anisotropic
ing direct correlation functions are similar to the functionsion-ion distribution functionsg;;(r) is also interesting be-
gij(r)but have clearly acquired a long-range Coulomb tailcause of its possible use in physically anisotropic situation,
(Fig. 4). To obtain accurate values for the functioo&) such as the interaction of two ions in the presence of a wall
inside the ion core requires greater precision in calculationor a macromolecule. In order to test the procedure and pos-
As they are not needed for this study, we have not attemptesibly also improve the accuracy of calculated effective po-
such calculations. tentials we have attempted to calculate the effective poten-

The Ewald potential between a pair of iof26,27 was tials using the anisotropic ion-ion distribution functions
also spherically averaged and subtracted from the effectivg;;(r) evaluated over the whole periodic simulation cell.
potential to obtairvisjh"”(r). The baseline value af(r) and The effective direct correlation functions were obtained
ijh"”(r) is affected by the small errors kt=0 of the Fou- via discrete Fourier transforms of large data sets containing
rier transforms ofg(r) and in case owisjho”(r) also by the the functionsh;;(r) defined on the cube with 198 points in
choice of the additive constant in the Ewald potential. Butéach direction. The effective potentialg (r) were then ob-
we know that the solvent contribution to the effective poten-tained from Eq.(3) with the functionsbﬁ f(r) set to zero.

D. Anisotropic calculation of the effective potentials
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FIG. 5. Short-range part of the effective potential between ion-
ion pairs in aqueous NaCl electrolyte. Continuous line, 0.5 M; sepa-  FIG. 6. Short-range part of the ion-ion effective potentials in 0.5
rate symbols, 1 M. In subtracting Ewald potential we assumed dit NaCl electrolyte evaluted with different methods. Open symbols,

electric.constant of 79 and 78 for 0.5 M drl M solution,  inverse MC simulation, continuous line, spherical HNC; closed
respectively. symbols, HNC with anisotropic correlation functions of the simula-
tion cell.

After subtracting the Ewald potential from the anisotropic
Vi;(r) the short-range part was expected to be almost isotro- ) ) ) ) )
pic. However, the procedure appears difficult for several rea- The short-range effective potential obtained in the aniso-
sons. The full distribution functions are not as accurate as thiopic calculation was spherically averaged at the end of the
spherical averages, and even longer simulation times woul@@lculation. It is shown in Fig. 6 together with the results
be required for satisfactory accuracy. obtained from spherically averaged input data. The results

Another aspect of the simulation of ionic systems thatindicate that the anisotropic calculation is feasible although
requires more detailed study became apparent upon investit the present stage it appears less accurate. It gives values
gation of anisotropic data sets. The periodic system withvery close to the other two methods but drifts away from
long-range interaction facilitates correlations between moreero at large. Judging by the drift, the short-range potential
than two ions, and thus leads to unexpected slight preferalculated with this method is not as good as that obtained
ences of each ion to be in a particular positions within theafter spherical averaging. Possible source of error may be
simulation cell. inadequate approximation in changing to grand canonical en-
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samble using spherically symmetrical Eg) or a need for
corrections between periodic and nonperiodic quanti2&

ion interaction in the aqueous solvent. This has been tested
earlier [14] using simulation methods, where activity and
osmotic coefficients of a solution were evaluated from the
effective potentials. Similar testing can now be more easily
o o erformed using variants of the HNC approximation. But the
Liquid state closure approximations are normally testednost interesting problems to be explored in the future relate
by evaluating radial distribution functions from the model (5 the behavior of ions in aqueous solutions near the sur-
potentials and comparing the results with simulations. In thgzces. The confirmation of the accuracy of HNC approxima-

present case we proceeded in the opposite direction, evalypn in work with the effective potentials is important for
ating the effective potentials from ion-ion distribution func- sych future applications.

tions and comparing the results with inverse MC simulations.
The excellent agreement proves that HNC is a very good
approximation to use with the effective potentials between
ions in aqueous solutions. Just like a primitive model elec-
trolyte, the effective ionic fluid is normally not a dense fluid

IV. CONCLUSION
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